MMAT 5010 Linear Analysis (2024-25): Homework 9 Deadline: 19 Apr 2025

Important Notice:

 \clubsuit The answer paper must be submitted before the deadline.

 \blacklozenge The answer paper MUST BE sent to the CU Blackboard. Please refer to the course web for details.

1. Let $(X, \langle \cdot, \cdot \rangle)$ be an inner product space. Show that the inner product $\langle \cdot, \cdot \rangle : X \times X \longrightarrow \mathbb{C}$ is continuous, that is, whenever the sequences $x_n \to x$ and $y_n \to y$ in X, we have $\langle x_n, y_n \rangle \to \langle x, y \rangle$.

From this show that if A is a subset of X, then $A^{\perp} := \{x \in X : x \perp y, \text{ for all } y \in A\}$ is a closed subset of X.

2. Let $(X, \langle \cdot, \cdot \rangle_X)$ and $(Y, \langle \cdot, \cdot \rangle_Y)$ be Hilbert spaces. For $(x_1, y_1), (x_2, y_2) \in X \times Y$, put

$$\langle (x_1, y_1), (x_2, y_2) \rangle_{X \times Y} := \langle x_1, x_2 \rangle_X + \langle y_1, y_2 \rangle_Y.$$

Show that $\langle \cdot, \cdot \rangle_{X \times Y}$ is an inner product on the direct sum $X \times Y$ and it is a Hilbert space under this inner product.

- 3. Let X be a Hilbert space and let $T, S \in B(X)$. Show that
 - (a) $(TS)^* = S^*T^*$.
 - (b) if T is invertible, that in $T^{-1} \in L(X)$ exists, then $(T^{-1})^* = (T^*)^{-1}$.

*** End ***